Extensions 1→N→G→Q→1 with N=C32 and Q=C3⋊S3

Direct product G=N×Q with N=C32 and Q=C3⋊S3
dρLabelID
C32×C3⋊S318C3^2xC3:S3162,52

Semidirect products G=N:Q with N=C32 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C321(C3⋊S3) = He34S3φ: C3⋊S3/C3S3 ⊆ Aut C3227C3^2:1(C3:S3)162,40
C322(C3⋊S3) = He35S3φ: C3⋊S3/C3S3 ⊆ Aut C32186C3^2:2(C3:S3)162,46
C323(C3⋊S3) = C3×C33⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C3254C3^2:3(C3:S3)162,53
C324(C3⋊S3) = C34⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C3281C3^2:4(C3:S3)162,54

Non-split extensions G=N.Q with N=C32 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C32.1(C3⋊S3) = C33⋊S3φ: C3⋊S3/C3S3 ⊆ Aut C3296+C3^2.1(C3:S3)162,19
C32.2(C3⋊S3) = He3.3S3φ: C3⋊S3/C3S3 ⊆ Aut C32276+C3^2.2(C3:S3)162,20
C32.3(C3⋊S3) = He3⋊S3φ: C3⋊S3/C3S3 ⊆ Aut C32276+C3^2.3(C3:S3)162,21
C32.4(C3⋊S3) = 3- 1+2.S3φ: C3⋊S3/C3S3 ⊆ Aut C32276+C3^2.4(C3:S3)162,22
C32.5(C3⋊S3) = C33.S3φ: C3⋊S3/C3S3 ⊆ Aut C3227C3^2.5(C3:S3)162,42
C32.6(C3⋊S3) = He3.4S3φ: C3⋊S3/C3S3 ⊆ Aut C32276+C3^2.6(C3:S3)162,43
C32.7(C3⋊S3) = C9⋊D9φ: C3⋊S3/C32C2 ⊆ Aut C3281C3^2.7(C3:S3)162,16
C32.8(C3⋊S3) = C322D9φ: C3⋊S3/C32C2 ⊆ Aut C32186C3^2.8(C3:S3)162,17
C32.9(C3⋊S3) = C3×C9⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C3254C3^2.9(C3:S3)162,38
C32.10(C3⋊S3) = C324D9φ: C3⋊S3/C32C2 ⊆ Aut C3281C3^2.10(C3:S3)162,45
C32.11(C3⋊S3) = C3×He3⋊C2central extension (φ=1)27C3^2.11(C3:S3)162,41

׿
×
𝔽