extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3⋊S3) = C33⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 9 | 6+ | C3^2.1(C3:S3) | 162,19 |
C32.2(C3⋊S3) = He3.3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.2(C3:S3) | 162,20 |
C32.3(C3⋊S3) = He3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.3(C3:S3) | 162,21 |
C32.4(C3⋊S3) = 3- 1+2.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.4(C3:S3) | 162,22 |
C32.5(C3⋊S3) = C33.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 27 | | C3^2.5(C3:S3) | 162,42 |
C32.6(C3⋊S3) = He3.4S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C32 | 27 | 6+ | C3^2.6(C3:S3) | 162,43 |
C32.7(C3⋊S3) = C9⋊D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C32 | 81 | | C3^2.7(C3:S3) | 162,16 |
C32.8(C3⋊S3) = C32⋊2D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.8(C3:S3) | 162,17 |
C32.9(C3⋊S3) = C3×C9⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C32 | 54 | | C3^2.9(C3:S3) | 162,38 |
C32.10(C3⋊S3) = C32⋊4D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C32 | 81 | | C3^2.10(C3:S3) | 162,45 |
C32.11(C3⋊S3) = C3×He3⋊C2 | central extension (φ=1) | 27 | | C3^2.11(C3:S3) | 162,41 |